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An algorithm is proposed for the numerical computation of the temperatures, 
stresses, and strains in articles during heat treatment. Specific computations 
are performed for plates from ShKhl5 steel. 

In connection with the increased demands on the quality of articles subjected to heat 
treatment, as well as the necessity to save metals and energy, the problem of a theoretical 
determination of the temperature and thermal stresses during heat treatment becomes more and 
more urgent. The difficulties in formulating and solving such a problem are related pri- 
marily to the structural transformations in the metal. In the majority of previous papers 
these transformations were not taken into account, and the results obtained were far from 
realistic. The first attempt to take account of structural stresses was made in [1-4] within 

the framework of thermoelasticity theory. The problem of stress analysis during heat treat- 
ment with plastic deformations taken into account was examined most fully in [5]. However, 
the dependences of the thermophysical and mechanical characteristics of the material on the 
temperature, the heat of the phase transformations, and the kinetic plasticity at the time of 
the transformations were not taken into account in [5], which could influence the results 

obtained substantially. Application of numerical methods in recent years permitted the solu- 
tion of a number of heat-treatment problems of practical importance. The temperature field 
and structure of an infinite hollow cylinder during hardening was computed in [6]. The papers 
[7, 8], in which an analysis is given of transformation models and a method of computing the 
structural components on a thermokinetic diagram (TKD) is presented, are also devoted to de- 

termining the temperature fields of articles during hardening with the heat of phase trans- 
formation taken into account. Paper [9] is devoted to the numerical computation of stress 
fields during plate hardening on an electronic computer. An attempt was apparently first 
made there to take account of the effect of kinetic plasticity during martensite transforma- 
tions, including the elevated metal plasticity during phase transformations [I0], in a stress 
analysis in a plate being hardened. Unfortunately, the magnitude of the kinetic plasticity 
coefficient is not indicated and the calculation algorithm is not presented in [9]. This 
does not permit utilization of the results of this paper in performing analogous computations. 

An algorithm and results of a numerical computation of the temperature, stresses, and 
strains during heat treatment are elucidated in this paper, in which the phase transformations 
in metals, the temperature dependences of the physical properties, the possibility of the 
origination of plastic strains and the kinetic plasticity are taken into account. The problem 
of computing the thermal stresses and strains in the case under consideration can be separated 
into two problems to be performed sequentially [ii]: i) the computation of the temperature 
fields and the structural components; and 2) the computation of the thermal stress fields.* 
An infinite plate was selected as object of investigation in this paper. The temperature 
problem for an infinite plate can be formulated in the form 

0~; Oz --G--z + Q' (1) 

~(~) a__~__ j = ~(~l~=o--~),  (2) 
Ug J z ~ O  

*Because of the insufficiency of literature data, the influence of the stresses on the degree 
of structural transformations was not taken into account in the paper. 
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The heat liberation Q during phase transformations is determined from the known formula 

[6, etc.] 
dm 

Q=qP-- d~ (4) 

The computational method in [12], based on the theory of nonisothermal flow with the Mises 
fluidity condition [13 ] and our modification taking account of the kinetic plasticity effect, 
was used in investigating the thermal stress state. On the basis of [12], we write the rela- 
tion between the strain and stress increments 

Ae~y = q*%~ - -  Gy,  ( 5 )  
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The coefficient ~ at the time z is determined on the basis of the fluidity condition 

_ I +AF M, if ~--o~(8)<0, 
20 

(7) 
An+AFM, if o~--~(8)=0. 1 -- 

2G 

Since the quantities bxx, ..., bxy are known from the initial conditions at T = 0, then 
relationships (5) and (6) permit sequential computation of the stresses and strains at each 
step in time. We now apply the method elucidated above to compute the stresses and strains 
in the infinite plate being hardened. Since the plate is free of surface forces and the tem- 
perature varies only along its thickness, i.e,, O = O(z), it can then be assumed [ii] that 
under these conditions the stress and strain components will have the form 

~ =  (z) = %~ (z), ~z~ (z) = O, %~= %~ = ~zy = O, ~ =  (z) = ~ (z). ( 8 )  

From (5) it is not difficult to obtain 

3 
~ = =  (&~  + G~). ( 9 )  

Since ASxx, A~yy and ASzz are functions of the coordinate z, then from the strain compatibility 

condition [14] we have an equation for ASxx: 

02As~ -- 0. (i0) 
Oz z 

Hence 
Aexx : Clz + C2" (ii) 

Now, (9) becomes 

3 (C1z + C2 q- b.~x). (12)  
Uxx --- 

u i +  2"7 
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We find the constants C~ and C2 from the equilibrium condition 

6 

! ax~dz = O. 

6 

0 

(13) 

(14) 

Taking account of the kinetic plasticity is the most complex problem and not studied in 

practice. Our kinetic plasticity function F M foramartensite transformation is taken in 
the form AF M = KAM, from data in [9], where AM is the increment in the degree of martensite 

structure transformation between the times T -- AT and T, and K is a proportionality factor. 
As in [5], the function of the free change in volume in (6) is selected in the form 

= P (L~I-- ML~I) + ML21 + Lit. (15) 

The coefficients Lxl, L21, L3x equal 

Lx I = Vt (O) -- VI (80) , L~ I = V~ (8) -- Vl (8) , L~ I = Vs(8)--VI(~) , 

3v~ (80) 3v~ (80) 3v~ (~o) 
where V~, V2, V3 are the specific volumes of austenite, martensite, and a ferrite--cementite 
mixture, respectively. 

The specific volumes of the structural components V~, V2, V3 of steel as a function of 
the carbon temperature and concentration were calculated by the Yur'ev formulas [15]. 

A numerical algorithm, realized on an ES type electronic computer, was compiled to com- 
pute the temperature fields from (1)-(3) and the stress fields from (12)-(14). An iteration 

process in P, elucidated in [12], was used in the calculation of the stress and strain with 
(7) taken into account. Specific computations were performed for plates from the ShKhl5 
steel (6 = 0.01 m) during hardening in oil. As in [6], the quantities of the structural com- 
ponents were determined by the TKD presented in [16]. The author of [6] covered the TKD 
domain by a mesh to each of whose nodes a specific structure corresponded. Such a method 

could apparently result in noticeable error in the calculation of the degree of structure 
transformation within the characteristicTKDzones. Hence, we took the following method to 

compute the degree of perlite and bainite transformation. The entry points in each of the 
transformation domains in temperature and time were determined first. The degree of trans- 
formation of each of the structures was determined with the residence time of the computa- 

tional point in the transformation zone taken into account 

p--  ap(T-- Tp), (16) 

B = a B (T-- %), (17) 

where ~p and a B are factors obtained by miscounting the cooling curves shown on the TKD. 
Since the dependence of the degree of martensite transformation on the temperature is linear 
in nature [17], the degree of martensite transformation was computed from the formula 

M : OM-- ~ ~M_~,c (1--P--B) .  (18) 

There are no data in the literature on the magnitude of K. From a verbal communication of 
the author of [9], for ShKhl5 steel K = 0.001. In the computations we performed, the values 

of K were variated in a broad range. The values of the heats of transformation in the temper- 
ature field computations are presented in [6], while the thermophysical and mechanical proper- 
ties of steel ShKhl5 are in [18] and [19], respectively. The dependence of the heat transfer 
coefficient ~ on the surface temperature was computed from the data in [9]. 

Computations showed (Fig. i) that the stresses at the surface are tensile at the initial 
moments of cooling, and compressive at the center, while they change sign with cooling. These 
results are qualitatively in agreement with the pattern of the stress change during hardening, 

known from the literature on heat treatment [17], and also with the computations in [9]. 

Since there are no exact values of o T for steel ShKhl5 at high temperatures in the liter- 
ature, it would be important to estimate the influence of this parameter on the magnitude of 
the residual stress. Hence, values of OT at the hardening temperature 840~ were variated 
in the computations, and taken equal to 2.5, 5, and i0 kg/mm 2. The computations showed that 
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Fig. i. Stress and temperature distribution over the thickness 
of a plate hardened in oil, at different times T (I is the plas- 
ticity zone): i) T = 0.01 sec; 2) 0.97; 3) 14.3; 4) 38.1; 5) 
190; 6) 1427. ~, kgf/mm2; z, mm; 8, ~ 

Fig. 2. Dependence of the residual stresses o in a plate on 
the kinetic plasticity coefficient K: i) plate surface; 2) 
plate center. 

the residual stresses in the plate are practically independent of the selection of OT in the 
high temperature range. The coefficient K varies in the 10-5-10 -I band. As is seen from Fig. 
2, changes in K in the 10-3-10 -2 range influence the residual stresses substantially. 

It is interesting to compare the results obtained with experimental data. There are no 
test data in the literature on measurements of the strain and stress during plate hardening. 
Hence, the authors used the results of experiments in [20] in which the beam deflection of 
steel ShKhl5 was measured during hardening under load. The degree of martensite transforma- 
tion was also determined in the experiments. The diagram of the experimental set-up and the 
method of measurement are elucidated in [21]. We plotted the data corresponding to the exper- 
imental conditions in a computation of the deflection according to the program developed. In 
the case of the beam gyy = dzz = 0 and in place of (9) we obtain on the basis of (5) 

3 
~ - 2 v - - ( A ~ +  ~ + bx~). (19) 

T a k i n g  a c c o u n t  o f  t h e  b e n d i n g  moment a c t i n g  on t h e  beam, t h e  e q u a t i o n  

~ 

e x x  z d z +  R = 0 (20) 

is used in place of (14), where R = Px/2, and x is the coordinate along the beam length. 

The beam deflection y was determined by solving the differential equation y" =• (x), 
where • = CI is the beam curvature. 

The heat-transfer coefficient ~ as a function of the surface temperature of a jet air- 
cooled beam was computed from experimental values of the time change in the beam temperature 

obtained by the author [20]. The results of comparing the test and computed values of the 
data are presented in Fig. 3. 

The initial values of the deflections at M = 0 differ by approximately 2.5 times by com- 
putation and experiment. This is apparently associated with the fact that the effective load 
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Fig. 3. Dependence of the beam deflection y on the 
degree of martensite transformation M (dashed line is 
experimental data [20], and solid line is the computed 
data): i) K = 0.001; 2) 0.002; 3) 0.004. y,103, m; 
M, %. 

P in the tests [20] could cause stresses exceeding the yield point of the beam material at 
high temperatures in certain cases. It is seen from Fig. 3 that the order of magnitude of 
the deflections obtained by experimental and computational means is identical. These data 
could be brought together by an appropriate change in the kinetic plasticity factor K. The 
main reason for the discrepancy between the test and computed values is probably the approxi- 
mate connection between the strains and stresses in the martensite transformation domain plot- 
ted in the computations from [9]. At this time-further investigations of the kinetic plastic- 
ity effect are required which would permit establishment of a more accurate physical connec- 
tion between the stresses and strains during phase transformations. 

On the basis of the investigations it can be assumed that the computation algorithm pre- 
sented can be utilized in computations of the temperatures, stresses, and strains of articles 
during heat treatment. 

NOTATION 

i, heat conduction; C, specific heat; p, density; ~, temperature; ~M, temperature of the 
beginning of martensite transformation; T, time; Tp, TB, time of the beginning of perlite and 
bainite transformation, determined by the TKD; 6, heat-transfer coefficient; z, coordinate 
over the plate thickness; 6, plate thickness; q, specific heat of the phase transformation; 
m, degree of structure transformation; Sxx, ..., Sxy-.., strain tensor components; Oxx, ..., 
Oxy, stress tensor components; o = i/3(dxx + Oyy + Ozz); dT, material yield point; ~, a 
proportionality factor between the stress and strain deviators in the plastic zone; G, shear 

modulus; y, volume compression modulus; ~, a function of the free change in volume; oi, stress 
intensity; FM, kinetic plasticity function for the martensite transformation; P, B, M, degrees 
of perlite, bainite, and martensite transformation, respectively; • plate curvature; P, force. 
Subscripts: P, perlite; B, bainite; M, martensite; C, medium; 0, initial value. 
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MATHEMATICAL MODEL AND ALGORITHMS FOR AN ELECTRONIC COMPUTER 

ANALYSIS OF THE HEAT AND MASS TRANSFER IN FREEZING THE SOIL 

A. R. Pavlov and P. P. Permyakov UDC 536.24 

An analysis is performed of the selection of a mathematical model of the heat and 
mass transfer in freezing the soil, and an economical algorithm of its computa- 
tion on an electronic computer is constructed. 

Mathematical models of the heat and mass transfer during freezing disperse media can be 
separated into two groups [i]: in the first are models with a generalized Stefan-type condi- 
tion on the moving interface of the thawed and frozen zones, while models without extraction 
of the freezing front with phase transitions in the whole volume are in the second. 

The following assumption is ordinarily made in constructing the mathematical model of 
the first group: combined heat and mass transfer occurs in the thawed zone, while only heat 
transfer occurs in the frozen zone. Accordingly, the following system of equations [2] is 
used for the mathematical description of the freezing process: 

0T 
c T --  div (~T grad T), (1)  

Ot 

0~1 - -  div (k grad ~0 ,  (2)  
Ot 
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